
AADL models for ROS based applications

Eric SENN, Lucie BOURDON
Lab-STICC

Université de Bretagne Sud
Lorient, France

ADEPT Workshop, 17 June 2022

2

Our applications
● Mobile robots, in industry 4.0 5.0
1

2

5 4 3

3

Complex applications
● many services and
relations difficult to
represent

– navigation, localization,
mapping, path-planning,
target tracking, obstacle
avoidance, security,
reporting ...

4

ROS Robot Operating System
● middleware to ease the programming of robots
– synchronisation and communication mechanisms to hide

low-levels OS services
– multi-platform / multi-OS

5

ROS because ...
– set of tools for development, monitoring,

debugging, simulation (gazebo, morse ...)

– used in the industry : demand from our clients partners

– we are not smart enough don’t have time for complex things

6

… and it makes nice pictures ...

7

BUT … performance issues !
● Non functioning or
malfunctioning robots

– the robot is too slow, or lose its
way, or its target

– we observe :
● high CPU load
● slow communications
● missed deadlines

8

Our need
● A comprehensive view of the whole application
– the software: a set of ROS nodes interacting
– the hardware: the robot, its sensors, and embedded computer boards

● A tool to perform performance analysis
– Timing : schedulability & latency
– CPU load analysis
– BUS load analysis

● ASAP in the development cycle
● Something more simple and fast than accurate
– simple & fast modeling, analysis, profiling

9

Our choice
● AADL (Architecture Analysis and Design Language)
– supporting Model Based Engineering dev. cycle
– with everything to model real-time embedded systems:

● software components (process, thread, data, port …)
● hardware components (processor, bus, memory, devices …)
● deployment specification with bindings : specify to which HW

component(s) a SW component is bound to

● OSATE2 (Open Source AADL Tool Environment)
– uses AADL properties to carry on proper analysis

10

Exemple : the application model

RGB
camera

sonar
belt

differential
drive

11

Exemple : the robot
● leo rover: SBC (raspberry Pi4) + leo board (~arduino)

12

that goes to a Library ...
● HW components & SW components ...

13

SW components in ROS
● a ROS node = one process
– AADL imposes to have inputs / outputs defined in the

component declaration
● in / out event data ports

– implementation shows
what is inside

● subcomponents and
connections

14

ROS : threads inside A ROS NODE

Receiver
Thread

Spinner
Thread

Publisher
Thread

incoming
message subscriber

queue

Callback
queue

publisher queuepublish()

● ros node spawns threads :
– the receiver (network) thread listens

for incoming messages on TCP
sockets and pushes them on the
callback queue after deserializing
them

– the spinner thread pops messages
from the queue and runs the user
code : spinner thread run periodically
or every time a message is received

– publisher threads to send messages

outgoing
message

15

Properties for
BUS load analysis

● added properties :

– thread component : Period

– data component : Data_Size

– system component :
● Actual_Connection_Binding

● enabling analysis :

– bandwidth demand per connection

= Data_Size / Period

– BUS load = Σ demands per connection
bound to the bus

16

Bandwidth demands vs capacity
● BW demand checked against BW capacity
– defined in the bus component with the BandwidthCapacity

AADL property

17

ROS software bus : TCPROS
● to carry messages between nodes running in the same
computer

– actual BW capacity depends on the CPU the nodes are
running onto

– communications impact on the CPU load to be checked⇒
– different hardware targets different implementations⇒

18

Profiling bus capacities
● experimental setup : producer → listener with
growing messages sizes and rates
A15 cores

BW capacity
vs CPU affinity

19

Properties for CPU
load analysis

● added properties :

– Compute_execution_time

– Period

– MIPSBudget (SEI standard)

– Actual_Processor_Bindings

● enabling analysis :

– load per thread =
compute_execution_time /
period

– total processor load =
Σ load per thread bound to the processor

– MIPS demand for a processor =
MIPSCapacity x load

20

Profiling a ROS node
● launch the node, in realistic situation, setting
– CPU frequency : cpufreq-set ...
– CPU affinity : launch-prefix="taskset -c 5,6,7" …
– Process scheduling policy & priority : chrt -f -p 15 PID ...

● record performance for different durations
– perf stat -p PID -- sleep duration

● using scripts (shell, awk …)

21

Analysis with OSATE2
● performing CPU load &
BUS load analysis

– average error 3,7%
– modeling effort reasonable

● fast profiling (a few hours)
● fast analysis (a few seconds)

22

Our ROS library of AADL models
● We provide a library of models for software components
– Organized in packages according to ROS based applications

● ROS nodes and complex services (SLAM, navigation stacks …) from mainstream ROS
distributions

● ROS data types and messages
● ROS synchronisation and communication mechanisms

● We provide a library of models for hardware components
– SBC : Jetson Xavier, Nano, Odroid XU4, Raspberry Pi4, Pi3 …
– SoC : Exynos 5422, Broadcom BCM2711 ...
– SoPC : Xilinx, Altera with hardcores/softcores (PowerPC, µBlaze, NIOS …)
– Robots : (Pioneer3DX, LeoRover, TurtleBot ...)

23

Our ROS library of AADL models
● includes dedicated properties to allow for multiple analysis from OSATE2
– Ressource allocation analysis :

● CPU load / Bus load
● Memory capacities / Power consumption / Weights

– Timing and scheduling analysis
● Schedulability, scheduling analysis
● Flow latency analysis

● offers tools for Design Space Exploration in Model Based Engineering
– choosing hardware targets & software architectures
– exploring binding solutions / balancing between CPU vs Bus load
– to guarentee reaction time for robotic applications

