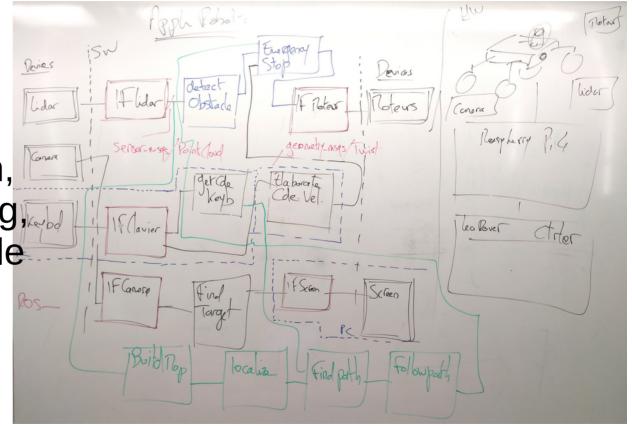
AADL models for ROS based applications

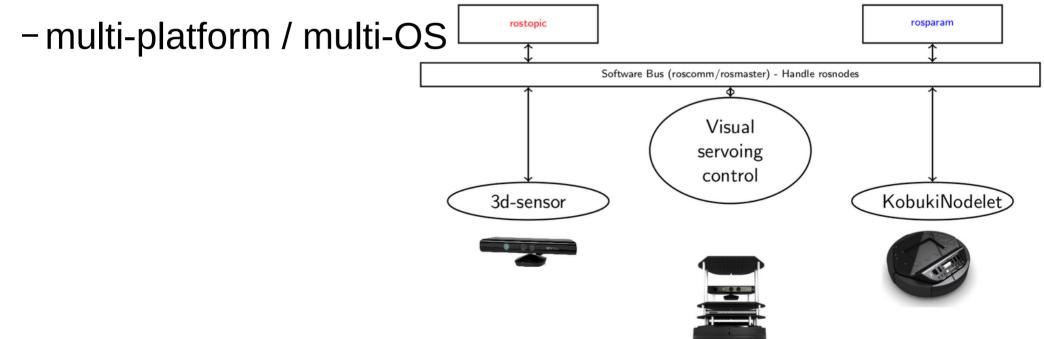
Eric SENN, Lucie BOURDON Lab-STICC Université de Bretagne Sud Lorient, France



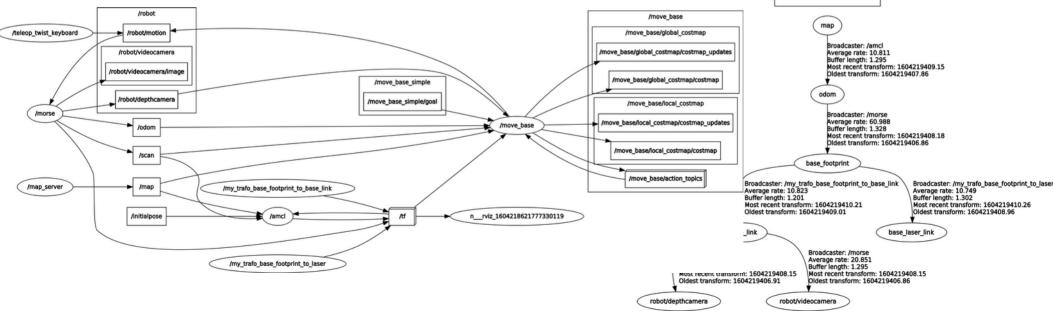
ADEPT Workshop, 17 June 2022

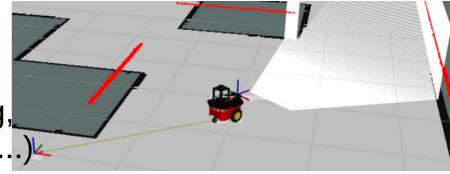

Our applications

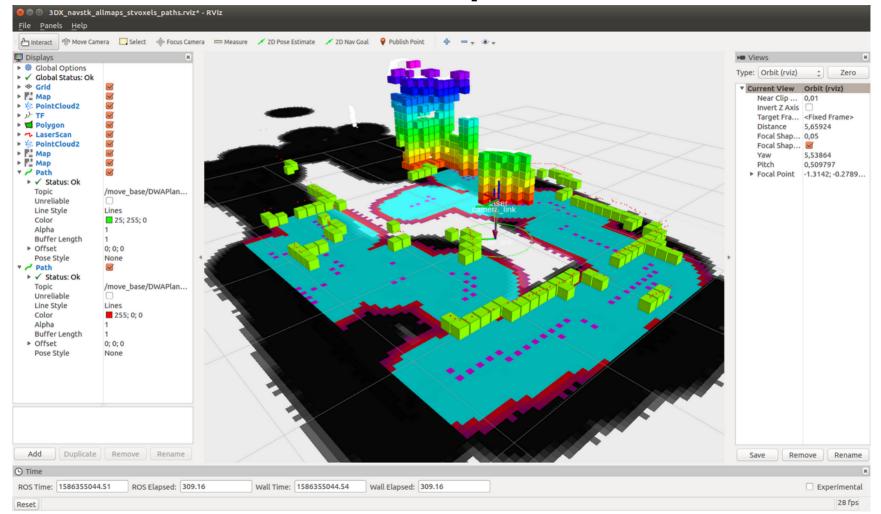
• Mobile robots, in industry 4.0 5.0


Complex applications

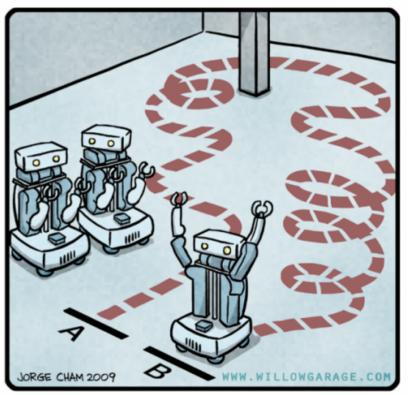
- many services and relations difficult to represent
 - navigation, localization, mapping, path-planning, target tracking, obstacle avoidance, security, reporting ...


ROS Robot Operating System


- middleware to ease the programming of robots
 - synchronisation and communication mechanisms to hide low-levels OS services


ROS because ...

- set of tools for development, monitoring, debugging, simulation (gazebo, morse ...)
- used in the industry : demand from our clients partners
- we are not smart enough don't have time for complex things

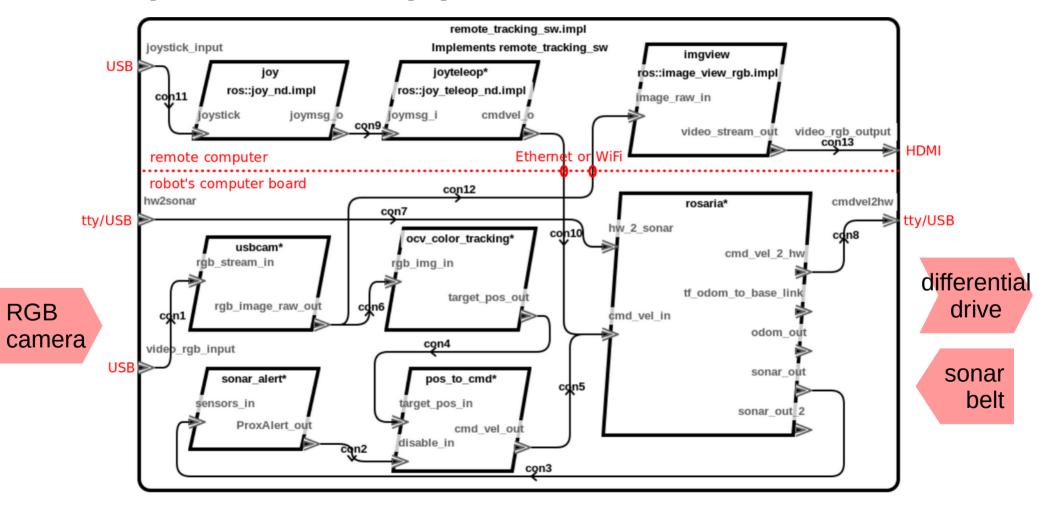

.. and it makes nice pictures ...

BUT ... performance issues !

- Non functioning or malfunctioning robots
 - the robot is too slow, or lose its way, or its target
 - -we observe :
 - high CPU load
 - slow communications
 - missed deadlines

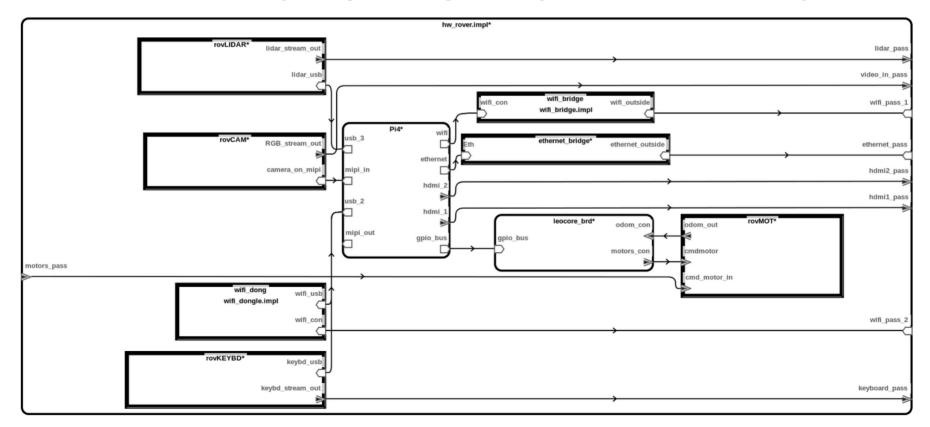
R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

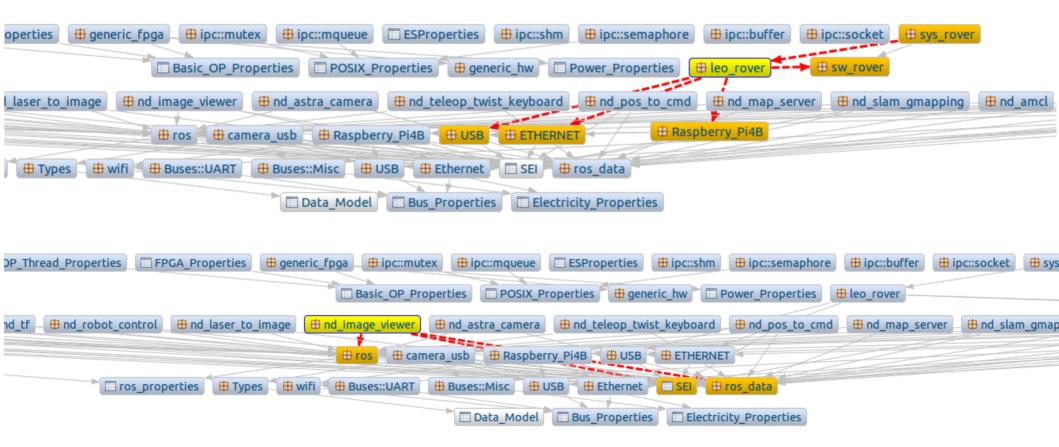

Our need

- A comprehensive view of the whole application
- the software: a set of ROS nodes interacting
- the hardware: the robot, its sensors, and embedded computer boards
- A tool to perform performance analysis
- Timing : schedulability & latency
- CPU load analysis
- BUS load analysis
- ASAP in the development cycle
- Something more simple and fast than accurate
- -simple & fast modeling, analysis, profiling

Our choice


- AADL (Architecture Analysis and Design Language)
- supporting Model Based Engineering dev. cycle
- -with everything to model real-time embedded systems:
 - software components (process, thread, data, port ...)
 - hardware components (processor, bus, memory, devices ...)
 - deployment specification with bindings : specify to which HW component(s) a SW component is bound to
- OSATE2 (Open Source AADL Tool Environment)
 - -uses AADL properties to carry on proper analysis

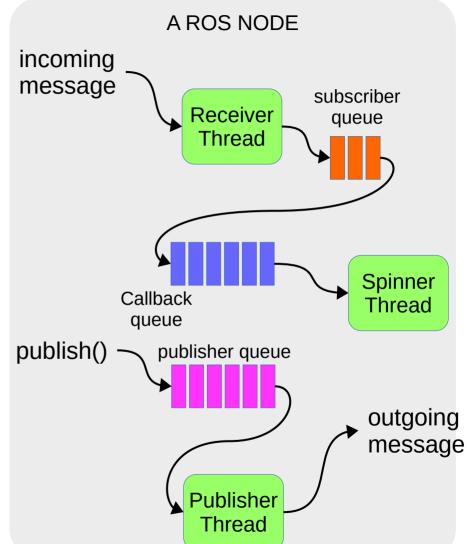
Exemple : the application model


Exemple : the robot

• leo rover: SBC (raspberry Pi4) + leo board (~arduino)

that goes to a Library ...

• HW components & SW components ...


SW components in ROS

- a ROS node = one process
 - AADL imposes to have inputs / outputs defined in the component declaration
 - in / out event data ports
 - implementation shows what is inside
 - subcomponents and connections

```
process usb_cam_nd extends node
features
  rgb_stream_in: in event data port video_stream.rgb;
  rgb_image_raw_out: out event data port Image.rgb;
  end usb_cam_nd;
process implementation usb_cam_nd.impl
  subcomponents
   image_broadcaster: thread imagePublisher.impl;
    usbSpinner: thread usbcam_spinner.impl;
   connections
    usb_cam_nd_impl_new_connection: port image_broadcaster.
    pub_msg -> rgb_image_raw_out;
    usb_cam_nd_impl_new_connection2: port rgb_stream_in ->
    usbSpinner.rgb_stream_in;
   end usb_cam_nd.impl;
```

ROS : threads inside

- ros node spawns threads :
- the receiver (network) thread listens for incoming messages on TCP sockets and pushes them on the callback queue after deserializing them
- the spinner thread pops messages from the queue and runs the user code : spinner thread run periodically or every time a message is received
- publisher threads to send messages

Properties for BUS load analysis

- added properties :
- thread component : Period
- data component : Data_Size
- system component :
- Actual_Connection_Binding
- enabling analysis :
- bandwidth demand per connection

= Data_Size / Period

- BUS load = Σ demands per connection bound to the bus

```
process implementation usb_cam_nd.impl
subcomponents
image_broadcaster: thread imagePublisher.impl;
usbSpinner: thread usbcam_spinner.impl;
connections
con1: port image_broadcaster.pub_msg ->
rgb_image_raw_out;
con2: port rgb_stream_in -> usbSpinner.rgb_stream_in;
end usb cam nd.impl;
```

```
thread imagePublisher extends publisher 
features
```

```
pub_msg: refined to out event data port Image.rgb;
end imagePublisher;
```

```
thread implementation imagePublisher.impl
properties
```

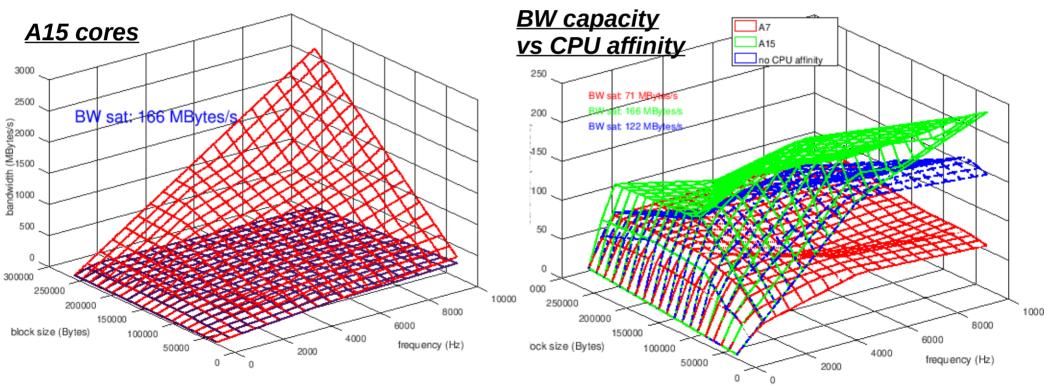
```
Period => 33333 us;—@ 30 images/s
end imagePublisher.impl;
```

```
thread im
    imag
    data topic end topic;
    data implementation topic.impl end topic.impl;
    properti
    Compi
    data sensor_msgs extends topic end sensor_msgs;
    data implementation sensor_msgs.impl extends topic.impl
    data Image extends sensor_msgs end Image;
    data implementation Image.impl extends sensor_msgs.impl end
        Image.impl;
    data implementation Image.rgb extends Image.impl
    properties
        Data_Size => 921 KByte;
    end Image.rgb;
```

Bandwidth demands vs capacity

- BW demand checked against BW capacity
- defined in the bus component with the *BandwidthCapacity* AADL property

```
system implementation Odroid_XU4.impl
  subcomponents
    Exynos SOC: system Exynos 5422::Exynos 5422.impl;
    ethernet bus: bus Ethernet::Ethernet.impl {SEI::
     BandWidthCapacity => 1000.0 MBytesps; };
    usb bus 1: bus USB::USB.impl {SEI:: BandWidthCapacity =>
      480.0 MBvtesps:}:
    usb bus 2: bus USB::USB.impl {SEI:: BandWidthCapacity =>
      4800.0 MBytesps: }:
    usb_bus_3: bus USB::USB.impl {SEI:: BandWidthCapacity =>
      4800.0 MBytesps; };
    hdmi dev: device HDMI.impl;
  connections
    connection1: bus access ethernet -> ethernet_bus;
    connection2: bus access usb_1 -> usb_bus_1;
    connection3: bus access usb 3 \rightarrow usb bus 3;
    connection4: bus access usb_bus_2 -> usb_2;
    connection5: port hdmi dev.hdmi port -> hdmi;
end Odroid XU4.impl;
```


ROS software bus : TCPROS

- to carry messages between nodes running in the same computer
- actual BW capacity depends on the CPU the nodes are running onto
- communications impact on the CPU load \Rightarrow to be checked
- different hardware targets \Rightarrow different implementations

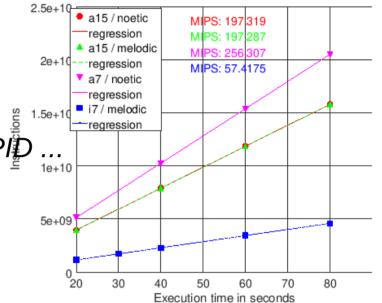
```
bus ros_bus end ros_bus;
bus implementation ros_bus.no_taskset extends ros_bus.impl
properties
SEI::BandWidthCapacity => 122.0 MBytesps;
end ros_bus.no_taskset;
bus implementation ros_bus.A15 extends ros_bus.impl
properties
SEI::BandWidthCapacity => 166.0 MBytesps;
end ros_bus.A15;
```

Profiling bus capacities

• experimental setup : producer \rightarrow listener with growing messages sizes and rates

Properties for CPU load analysis

- added properties :
- Compute_execution_time
- Period
- MIPSBudget (SEI standard)
- Actual_Processor_Bindings
- enabling analysis :
- load per thread =
 compute_execution_time /
 period
- total processor load = Σ load per thread bound to the processor
- MIPS demand for a processor = MIPSCapacity x load


process implementation usb_cam_nd.xu4_a15 extends
 usb_cam_nd.impl
 subcomponents
 image_broadcaster: refined to thread imagePublisher.
 xu4_a15;
 properties
 SEI::MIPSBudget => 141.0 MIPS;
 end usb_cam_nd.xu4_a15;

thread implementation imagePublisher.xu4_a15 extends
 imagePublisher.impl
 properties
 Period => 33 Ms;
 Compute_execution_time => 2319 us ... 2319 us;
 end imagePublisher.xu4_a15;

```
system implementation color tracking dep.i
 subcomponents
    c_t_sw: system color_tracking_sw::color_tracking_sw.
    impl;
    p3dx: system Pioneer3DX::Pioneer3DX.i;
    ROSbus: virtual bus ros::ros bus.impl;
  Properties
    Actual_Processor_Binding => (reference (p3DX.OdroidXU4
     .Exynos SOC.big_procs_cluster.big_proc1)) applies to
    c t sw.usbcam;
    Actual Processor Binding => (reference (p3DX.OdroidXU4
     .Exynos_SOC.big_procs_cluster.big_proc2)) applies to
    c_t_sw.ocv_color_tracking;
    Actual Processor Binding=> (reference (p3DX.OdroidXU4.
    Exynos SOC. little procs cluster. little proc1)) applies
     to c t sw.pos to cmd;
 end color tracking dep.i;
```

Profiling a ROS node

- launch the node, in realistic situation, setting
- CPU frequency : *cpufreq-set* ...
- CPU affinity : *launch-prefix="taskset -c 5,6,7" ...*
- Process scheduling policy & priority : *chrt -f -p 15 Pl*
- record performance for different durations
- perf stat -p PID -- sleep duration
- using scripts (shell, awk ...)

		/		′		1			
number of cycles	freq (GHz)	duration	MIPS	MIPS/frame	ipc	cycles/frame	run_time/fra	proc load	core
2751780463	1.992	20.00375	197334288	6577810	1.43	4599867	0.00231	6.92751	A15
5736961174	1.992	40.00616	197454813	6581827	1.38	4769440	0.00239	7.18289	A15
15567239635	1.4	20	256077388	8535913	0.329	25945399	0.01853	55.59728	A7
31191572553	1.4	40	256111603	8537053	0.32844	25992977	0.01857	55.69924	A7
	2751780463 5736961174 15567239635	27517804631.99257369611741.992155672396351.4	27517804631.99220.0037557369611741.99240.00616155672396351.420	27517804631.99220.0037519733428857369611741.99240.00616197454813155672396351.420256077388	27517804631.99220.00375197334288657781057369611741.99240.006161974548136581827155672396351.4202560773888535913	27517804631.99220.0037519733428865778101.4357369611741.99240.0061619745481365818271.38155672396351.42025607738885359130.329	27517804631.99220.0037519733428865778101.43459986757369611741.99240.0061619745481365818271.384769440155672396351.42025607738885359130.32925945399	27517804631.99220.0037519733428865778101.4345998670.0023157369611741.99240.0061619745481365818271.3847694400.00239155672396351.42025607738885359130.329259453990.01853	27517804631.99220.0037519733428865778101.4345998670.002316.9275157369611741.99240.0061619745481365818271.3847694400.002397.18289155672396351.42025607738885359130.329259453990.0185355.59728

Analysis with OSATE2

- performing CPU load & BUS load analysis
- -average error 3,7%
- modeling effort reasonable
 - fast profiling (a few hours)
 - fast analysis (a few seconds)

ROS node	CPU	MIPS	Execution	Estimated	Measured	Error
ROS note	010					
		Budget	time (ms)	load (%)	load (%)	%
usb_cam	A7	776	18.5	56	48.7	7.3
	A15	141	2.32	7	9.5	2.5
color_tracking	A7	1705	40	121	low frame rate	
	A15	2205	37	112	93	19
pos_to_cmd	A7	8.4	1	0.63	0.61	0.02
	A15	1.0	0.7	0.44	0.5	0.16
sonar_alert	A7	10	3	9	8	2
	A15	3	1	2	1.3	0.7
rp_lidar	A7	18	4.47	5.8	3	2.8
	A15	16	1.23	1.6	1	0.6
slam_gmapping	A7	462	4448	88.9	90	1.1
	A15	1464	4279	87.8	82.8	5
rosaria	A7	9.5	1.40	4.20	0.85	3.35
	A15	6.5	1.19	3.57	0.66	2.91

Our ROS library of AADL models

- We provide a library of models for software components
- Organized in packages according to ROS based applications
- ROS nodes and complex services (SLAM, navigation stacks ...) from mainstream ROS distributions
- ROS data types and messages
- ROS synchronisation and communication mechanisms
- We provide a library of models for hardware components
- SBC : Jetson Xavier, Nano, Odroid XU4, Raspberry Pi4, Pi3 ...
- SoC : Exynos 5422, Broadcom BCM2711 ...
- SoPC : Xilinx, Altera with hardcores/softcores (PowerPC, µBlaze, NIOS ...)
- -Robots : (Pioneer3DX, LeoRover, TurtleBot ...)

Our ROS library of AADL models

- includes dedicated properties to allow for multiple analysis from OSATE2
- Ressource allocation analysis :
 - CPU load / Bus load
 - Memory capacities / Power consumption / Weights
- Timing and scheduling analysis
 - Schedulability, scheduling analysis
 - Flow latency analysis
- offers tools for Design Space Exploration in Model Based Engineering
- choosing hardware targets & software architectures
- exploring binding solutions / balancing between CPU vs Bus load
- to guarentee reaction time for robotic applications