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RATIONALE –WHY EXPLORE MODEL-BASED DESIGN
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Robot software 
development is 
based on middleware

Many reusable 
components

A lot of boilerplate 
code W
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configuration 
influences complex 
functionalities

Very long 
computational 
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Many dependencies 
between elements

B
e
tt

e
r 

o
ve

rv
ie

w

Reusable 
components lead to 
a decentralised 
approach

No architectural 
view until runtime

No static check 
before deployment
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RATIONALE –WHY USE AADL

Hardware and 

software

Architecture 

overview

Component-based 

design

Static analysis

Inheritance
Hierarchical 

structure

Graphical and 

textual syntax
Tool support
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FROM COMPONENT-BASED TO COMPONENT-CONNECTOR

Strong emphasis on 

the component

Components and connectors 

are first-class citizen

Well defined 

communication protocols

Typed and named 

channels

High-level 

abstraction

4



COMPONENT-CONNECTOR: A REFINEMENT
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Reactive

Components are too high-level

Identify composable component 

behaviors

Provide ready-to-use design 

building blocks
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data internal_state end internal_state;

process component end component;

process implementation component.impl

subcomponents

internal_state: data internal_state;

end component.impl;

subprogram function

features

signal: out event port;

ist: requires data access internal_state;

end function;

thread component_behaviour

features

ist: requires data access internal_state;

end component_behaviour;

thread implementation component_behaviour.impl

subcomponents

function: subprogram function;

connections

pc: data access function.ist -> ist;

end component_behaviour.impl;

FROM COMPONENT-CONNECTOR TO AADL
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thread message_sink extends component_behaviour

features

msg: in event data port;

properties

Dispatch_Protocol => Aperiodic;

end message_sink;

thread message_source extends component_behaviour

features

msg: out data port;

properties

Dispatch_Protocol => Periodic;

end message_source;

thread filter extends component_behaviour

features

msg_in: in event data port;

msg_out: out data port;

properties

Dispatch_Protocol => Aperiodic;

end filter;

thread reactive extends component_behaviour

features

srv: provides subprogram access;

end reactive;

FROM COMPONENT-CONNECTOR TO AADL
7



FROM COMPONENT-CONNECTOR TO AADL

Used alone in many 

implementations Combined to create 

complex components
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EXTENSION TO ROS

Specialized to ROS-

specific design

Additional ROS 

components

Exploit inheritance

Modelling of ROS 

nodes
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thread publisher extends cnc::message_source

prototypes message: data;

features

msg: refined to out data port message;

tf: requires data access tf;

end publisher;

thread callback extends cnc::message_sink

prototypes message: data;

features

msg: refined to in event data port message;

tf: requires data access tf;

end callback;

thread service_provider extends cnc::reactive

prototypes service: subprogram;

features

srv: refined to provides subprogram access
service;

tf: requires data access tf;

end service_provider;

thread timer extend cnc::component_behaviour

features

tf: requires data access tf;

properties

Dispatch_Protocol => Periodic;

end timer;

EXTENSION TO ROS

Prototypes are used to accommodate the 

message type in topics/services
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MINIMAL ROS NODE

Configuration and 

data
Node lifecycle

Main execution 

loop of the node

Each subprogram is 

active in a specific 

state

Hidden by 

inheritance and 

code generation
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process talker extends ros::node

features

msg_out : out data port chat_msgs::Chat;

end talker;

ROS NODES – EXAMPLES
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process implementation talker.impl extends
ros::node.impl

subcomponents

publisher: thread ros::publisher.impl
(message => data chat_msgs::Chat);

connections

chatter : port publisher.msg_out -> msg_out;

end talker.impl;

ROS NODES – EXAMPLES

properties
Period => 10 ms applies to publisher;
topic_properties::Default_Name => "/out_chat" applies to msg_out;
Source_Text => ("talker.schema.json") applies to internal_state;
Source_Text => ("talker.h") applies to publisher.function;
Source_Name => "talk" applies to publisher.function;
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process listener extends ros::node

features

msg_in : out data port chat_msgs::Chat;

end talker;

ROS NODES – EXAMPLES
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process implementation listener.impl extends
ros::node.impl

subcomponents

subscriber: thread ros::callback.impl
(message => data chat_msgs::Chat);

connections

chatter : port msg_ing -> subscriber.msg_out;

end listener.impl;

ROS NODES – EXAMPLES

properties
Queue_Size => 1 applies to subscriber.msg;
topic_properties::Default_Name => "/in_chat" applies to msg_in;
Source_Text => ("listen.schema.json") applies to internal_state;
Source_Text => ("listener.h") applies to subscriber.function;
Source_Name => "listen" applies to subscriber.function;
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ROS NODES – EXAMPLES

system implementation talking.ros

subcomponents

talker: process talker.impl;

listener: process listener.impl;

connections

chatter: port talker.msg_out -> listener.msg_in;

properties

topic_properties::Name => "/chatter" applies to chatter;

Source_Text => ("talker.json") applies to talker;

Source_Text => ("listener.json") applies to listener;

end talking.ros;

data Chat
properties
Source_Text => ("Chat.schema.json");

end Chat;
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OTHER ARCHITECTURAL ELEMENTS

Sensors and actuators 

are modeled using 

devices

Physical connection 

are bound to buses

ROS topic/service are 

bound to virtual busesExisting nodes are 

modeled using auto-

generated interfaces

Systems represent 

launch files
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EXISTING ROS NODE

process amcl

features

amcl_pose: out data port geometry_msgs::PoseWithCovarianceStamped;

particlecloud: out data port geometry_msgs::PoseArray;

scan: in event data port sensor_msgs::LaserScan;

map: in event data port nav_msgs::OccupancyGrid;

initialpose: in event data port geometry_msgs::PoseWithCovarianceStamped;

properties

topic_properties::Default_Name => "/amcl_pose" applies to amcl_pose;

topic_properties::Default_Name => "/particlecloud" applies to particlecloud;

topic_properties::Default_Name => "/scan" applies to scan;

topic_properties::Default_Name => "/map" applies to map;

topic_properties::Default_Name => "/initialpose" applies to initialpose;

end amcl;

with topic_properties, 
geometry_msgs, 
sensor_msgs, nav_msgs;
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A SIMPLE ROS ARCHITECTURE
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CODE GENERATION

Convert to XML using 

custom Ocarina plugin

Generate code artifact 

using custom code 

generator Combine at compile 

time

Combine at run time
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REAL USE CASE: PERSONAL MOBILITY KIT

Remote control

Laser rangefinder

Odometry

On-board joystick

Autonomous 

navigation

Custom hardware 

interface
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AADL MODEL
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THE RAPT NODE

This is a ROS node!

Life cycle, main thread and internal 

state are omitted for simplicity

Periodic thread not 

based on component-

connector

ROS component 

behaviors extended 

with extra ports 

Unrecognized 

elements are ignored 

by the code generator

The model can be 

used for analysis
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ROS GRAPH
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CONCLUSIONS

Thank you for you attention – more details here:

Bardaro G., SemprebonA. , Chiatti A., and Matteucci M.

From models to software through automatic transformations: An AADL to ROS end-to-end toolchain.

3rd IEEE International Conference on Robotic Computing (IRC). 2019.

Bardaro G., SemprebonA. , and Matteucci M.

A use case in model-based robot development using AADL and ROS.

1st International Workshop on Robotics Software Engineering. 2018.

Bardaro G., and Matteucci M.

Using AADL to model and develop ROS-based robotic application.

1st IEEE International Conference on Robotic Computing (IRC). IEEE, 2017.
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