
MODELLING ROBOT ARCHITECTURES WITH AADL

GIANLUCA BARDARO, MATTEO MATTEUCCI



RATIONALE –WHY EXPLORE MODEL-BASED DESIGN
W

ri
te

 l
e
ss

 c
o

d
e

Robot software 
development is 
based on middleware

Many reusable 
components

A lot of boilerplate 
code W

ri
te

 b
e
tt

e
r 

co
d
e

Hardware 
configuration 
influences complex 
functionalities

Very long 
computational 
pipelines

Many dependencies 
between elements

B
e
tt

e
r 

o
ve

rv
ie

w

Reusable 
components lead to 
a decentralised 
approach

No architectural 
view until runtime

No static check 
before deployment

2



RATIONALE –WHY USE AADL

Hardware and 

software

Architecture 

overview

Component-based 

design

Static analysis

Inheritance
Hierarchical 

structure

Graphical and 

textual syntax
Tool support

3



FROM COMPONENT-BASED TO COMPONENT-CONNECTOR

Strong emphasis on 

the component

Components and connectors 

are first-class citizen

Well defined 

communication protocols

Typed and named 

channels

High-level 

abstraction

4



COMPONENT-CONNECTOR: A REFINEMENT

f

Source

f

Sink

f

Filter

f

Reactive

Components are too high-level

Identify composable component 

behaviors

Provide ready-to-use design 

building blocks

5



data internal_state end internal_state;

process component end component;

process implementation component.impl

subcomponents

internal_state: data internal_state;

end component.impl;

subprogram function

features

signal: out event port;

ist: requires data access internal_state;

end function;

thread component_behaviour

features

ist: requires data access internal_state;

end component_behaviour;

thread implementation component_behaviour.impl

subcomponents

function: subprogram function;

connections

pc: data access function.ist -> ist;

end component_behaviour.impl;

FROM COMPONENT-CONNECTOR TO AADL
6



thread message_sink extends component_behaviour

features

msg: in event data port;

properties

Dispatch_Protocol => Aperiodic;

end message_sink;

thread message_source extends component_behaviour

features

msg: out data port;

properties

Dispatch_Protocol => Periodic;

end message_source;

thread filter extends component_behaviour

features

msg_in: in event data port;

msg_out: out data port;

properties

Dispatch_Protocol => Aperiodic;

end filter;

thread reactive extends component_behaviour

features

srv: provides subprogram access;

end reactive;

FROM COMPONENT-CONNECTOR TO AADL
7



FROM COMPONENT-CONNECTOR TO AADL

Used alone in many 

implementations Combined to create 

complex components

8



EXTENSION TO ROS

Specialized to ROS-

specific design

Additional ROS 

components

Exploit inheritance

Modelling of ROS 

nodes

9



thread publisher extends cnc::message_source

prototypes message: data;

features

msg: refined to out data port message;

tf: requires data access tf;

end publisher;

thread callback extends cnc::message_sink

prototypes message: data;

features

msg: refined to in event data port message;

tf: requires data access tf;

end callback;

thread service_provider extends cnc::reactive

prototypes service: subprogram;

features

srv: refined to provides subprogram access
service;

tf: requires data access tf;

end service_provider;

thread timer extend cnc::component_behaviour

features

tf: requires data access tf;

properties

Dispatch_Protocol => Periodic;

end timer;

EXTENSION TO ROS

Prototypes are used to accommodate the 

message type in topics/services

10



MINIMAL ROS NODE

Configuration and 

data
Node lifecycle

Main execution 

loop of the node

Each subprogram is 

active in a specific 

state

Hidden by 

inheritance and 

code generation

11



process talker extends ros::node

features

msg_out : out data port chat_msgs::Chat;

end talker;

ROS NODES – EXAMPLES
12



process implementation talker.impl extends
ros::node.impl

subcomponents

publisher: thread ros::publisher.impl
(message => data chat_msgs::Chat);

connections

chatter : port publisher.msg_out -> msg_out;

end talker.impl;

ROS NODES – EXAMPLES

properties
Period => 10 ms applies to publisher;
topic_properties::Default_Name => "/out_chat" applies to msg_out;
Source_Text => ("talker.schema.json") applies to internal_state;
Source_Text => ("talker.h") applies to publisher.function;
Source_Name => "talk" applies to publisher.function;

13



process listener extends ros::node

features

msg_in : out data port chat_msgs::Chat;

end talker;

ROS NODES – EXAMPLES
14



process implementation listener.impl extends
ros::node.impl

subcomponents

subscriber: thread ros::callback.impl
(message => data chat_msgs::Chat);

connections

chatter : port msg_ing -> subscriber.msg_out;

end listener.impl;

ROS NODES – EXAMPLES

properties
Queue_Size => 1 applies to subscriber.msg;
topic_properties::Default_Name => "/in_chat" applies to msg_in;
Source_Text => ("listen.schema.json") applies to internal_state;
Source_Text => ("listener.h") applies to subscriber.function;
Source_Name => "listen" applies to subscriber.function;

15



ROS NODES – EXAMPLES

system implementation talking.ros

subcomponents

talker: process talker.impl;

listener: process listener.impl;

connections

chatter: port talker.msg_out -> listener.msg_in;

properties

topic_properties::Name => "/chatter" applies to chatter;

Source_Text => ("talker.json") applies to talker;

Source_Text => ("listener.json") applies to listener;

end talking.ros;

data Chat
properties
Source_Text => ("Chat.schema.json");

end Chat;

16



OTHER ARCHITECTURAL ELEMENTS

Sensors and actuators 

are modeled using 

devices

Physical connection 

are bound to buses

ROS topic/service are 

bound to virtual busesExisting nodes are 

modeled using auto-

generated interfaces

Systems represent 

launch files

17



EXISTING ROS NODE

process amcl

features

amcl_pose: out data port geometry_msgs::PoseWithCovarianceStamped;

particlecloud: out data port geometry_msgs::PoseArray;

scan: in event data port sensor_msgs::LaserScan;

map: in event data port nav_msgs::OccupancyGrid;

initialpose: in event data port geometry_msgs::PoseWithCovarianceStamped;

properties

topic_properties::Default_Name => "/amcl_pose" applies to amcl_pose;

topic_properties::Default_Name => "/particlecloud" applies to particlecloud;

topic_properties::Default_Name => "/scan" applies to scan;

topic_properties::Default_Name => "/map" applies to map;

topic_properties::Default_Name => "/initialpose" applies to initialpose;

end amcl;

with topic_properties, 
geometry_msgs, 
sensor_msgs, nav_msgs;

18



A SIMPLE ROS ARCHITECTURE
19



CODE GENERATION

Convert to XML using 

custom Ocarina plugin

Generate code artifact 

using custom code 

generator Combine at compile 

time

Combine at run time

20



REAL USE CASE: PERSONAL MOBILITY KIT

Remote control

Laser rangefinder

Odometry

On-board joystick

Autonomous 

navigation

Custom hardware 

interface

21



AADL MODEL
22



THE RAPT NODE

This is a ROS node!

Life cycle, main thread and internal 

state are omitted for simplicity

Periodic thread not 

based on component-

connector

ROS component 

behaviors extended 

with extra ports 

Unrecognized 

elements are ignored 

by the code generator

The model can be 

used for analysis

23



ROS GRAPH
24



CONCLUSIONS

Thank you for you attention – more details here:

Bardaro G., SemprebonA. , Chiatti A., and Matteucci M.

From models to software through automatic transformations: An AADL to ROS end-to-end toolchain.

3rd IEEE International Conference on Robotic Computing (IRC). 2019.

Bardaro G., SemprebonA. , and Matteucci M.

A use case in model-based robot development using AADL and ROS.

1st International Workshop on Robotics Software Engineering. 2018.

Bardaro G., and Matteucci M.

Using AADL to model and develop ROS-based robotic application.

1st IEEE International Conference on Robotic Computing (IRC). IEEE, 2017.

25


