
C2AADL_Reverse: A Model-Driven
Reverse Engineering Approach to
Development and Verification of

Safety-critical Software

Zhibin Yang1, Zhikai Qiu1, Yong Zhou1, Zhiqiu Huang1,
Jean-Paul Bodeveix2, Mamoun Filali2

1Nanjing University of Aeronautics and Astronautics (NUAA), China
2IRIT-Université de Toulouse, France

June 17, 2022

• Background & Motivation
• Overview of the Main Contributions
• C2AADL_Reverse Approach
• Validation and Verification Approach for C2AADL_Reverse
• Prototype Tool
• Case Studies
• Conclusion and Future Work

2

üRE for Safety-critical software
• Long-term maintenance (20-30 years or more)
• Complex challenge: The SCS communities have been

struggling to manage and maintain their legacy software.
• FAA: Reverse Engineering (RE) has been increasingly used.

3

üReverse Engineering (RE)
• A process to build more abstract representations (such

as architectural models, or use cases, etc) from a low-
level representation of a (software) system (such as
source code, or execution traces)

üThe main objective of RE:
• Provide a better understanding of the software

system’s current state, which can be used to correct
(e.g. fix bugs), update (e.g. alignment with updated
user requirements), upgrade (e.g. add new
capabilities), or even completely re-engineer the
system under study.

4

Generally, RE is a time-consuming and error-prone process.

üModel-driven Reverse Engineering (MDRE) [Spencer Rugaber, 2004]

• The application of model driven engineering (MDE) principles and
techniques to RE

• Meta-model, model-based views on legacy systems
• Raising the degree of automatic process through model

transformations

üRelated work [Claudia Raibulet,2017][André Pascal, 2019][Hugo Brunelière 2014]

• General solutions
• MoDisco (model discovery and model understanding,
 JAVA/JSP/XML -> UML2)

• Specific solutions (desktop/business/…)
• Src2MOF (Java -> UML)
• BREX (Java -> business rules)
• ITACG (C-> UML)
• Wang et al. , STOOD (C -> AADL)

5

üThe characteristics of
MDRE in desktop or
business domains. [Hugo
Brunelière 2014]

lGenericity
l Extensibility
lPartial/Full coverage
lDirect (re) use and

integration
lAutomation

6

üThe characteristics of
MDRE in the safety-
critical domain.
lGenericity
l Extensibility
lPartial/Full coverage

l Architecture
l Functional Behavior
l Runtime

lDirect (re) use and
integration

lAutomation
l validation of RE process
lVerification of resulted

models

üWe propose C2AADL_Reverse, a MDRE approach for safety-
critical software development and verification:
• Domain: SCSs need the modeling of architecture, functional

behaviors and runtime.
• Source artifacts: multi-task C source code conforms with the

“coding rules” in the aerospace industry.
• Target models: compared with the modeling languages used in

the existing works of MDRE such as UML, AADL (Architecture
Analysis and Design Language) is a powerful modeling language
for complex embedded system, which provides a unified
formalism for the modeling of architecture, functional behaviors,
and runtime.

üValidation and verification approach for C2AADL_Reverse
üPrototype tool
üIndustry case studies

7

8C2AADL_Reverse approach: step 1- step 3
V&V of C2AADL_Reverse: step 4, step 5

üThe features of the source code
• Our Case: the code is structured, i.e., conforms with the

coding/programming rules in aerospace industry
• Multi-tasks
• Strict development patterns, for example with clear

separation of communications, data types, components types,
etc.

• Safety programming: Cyclomatic complexity <10, LOC of each
function <100, …

• The code is not structured, then it needs pre-processing
(code annotations written manually)

9
It makes that the RE from C to AADL is feasible

üCode analysis to build code structure model
• Simplified meta-mode of multi-task C code structure

10

Project

Task Local_Var Function Global_Var

Statement

SwitchStmt IfStmt ForStmt WhileStmt APICall AssignStmt

Statement
Case

0…* 0…* 0…*

0…* 0…*

0…*

0…* else
init

body

body
then

when
*{ordered}

FunCall

*Statement is duplicated for readability

11

Example:

üStructure transformation
• Plain code ->

namespaces, source code
files -> create hierarchy

• Data types -> data
components

• function definition ->
subprogram component

• Task definition -> thread
component

12

üBehavior annex transformation
• Modeling and verification feasibility: cyclomatic complexity <10,

LOC of each function <100, …

13

üRun-time information transformation
• The APIs of OS or runtime execution platform

14
*Without loss of generality, we consider TI
SYS/BIOS Real-time Operating System (SYS/BIOS)
which is broadly used in the aerospace domain.

üGlobal view
• Validation of the RE process by using a comparison between two-

versions code (see case study)
• Compositional verification of the architecture model
• Verification of the leaf components

15

üThe principle of
compositional verification
• The state-explosion problem
• The verification of a composite

system is reduced to the
verification of its parts.

• Requirements are decomposed
and formalized into contracts
and subcontracts: <Assume,
Guarantee>

• AADL AGREE annex and tool

16

(1)

(2)

üVerification of leaf components with UPPAAL
• Why we use UPPAAL? It has been used in industry
• Properties: safety, liveness, no deadlock (Component-level

contracts: Assume-> initialization function, Guarantee -> TCTL)

17

(1)

(2)

üCompositional verification of AADL architecture model
• System-level properties (system-level contracts)

18

üIntermediate model
• Consider the extensibility

19

üImplementation of the tool

20

üImplementation of the tool

21

üGenerated AADL models

22

üGenerated AADL models

23

*The reason why the coverage rate of the generated
model does not reach 100% is that some codes are
not easily expressed in the behavior annex, such as bit
operation and type mandatory conversion, etc.
It allows us to complement and refine the models.

üValidation of the C2AADL RE process
• Comparison between two-versions source code

24

POK: pok_buffer_send, pok_buffer_receive SYS/BIOS: Mailbox_post, Mailbox_pend

code reviewing OCARINA

üValidation of the C2AADL RE process
• Comparison between two-versions source code

25

Code executing

üCompositional Verification of the generated AADL models

26

üCompositional Verification of the generated AADL models

27

üCompositional Verification of the generated AADL models

28

üCompositional Verification of the generated AADL models

29

üModel checking of the leaf components

30

üEffectiveness
• Three industrial case studies
• Two OS platforms

üComparison with other MDRE tools

31

• Conclusion:
• An MDRE approach named C2AADL_Reverse: the transformation

from multi-task C source code to AADL includes three parts:
Structural, Behavioral and Run-time transformations.

• Validation and verification approach of C2AADL_Reverse
• The prototype tool
• Industrial case studies

• Future work
• We are currently working on the semantics preservation proof of

C2AADL within Coq
• Coq semantics of AADL synchronous fragments
• Coq semantics of specific C multi-thread libraries
• Semantic-preserving transformation from C to AADL

• Compositional verification of the AADL asynchronous execution
model (X-AGREE) 32

Thank you very much!

33

