
Modelling AADL
with SysML v2

Pierre Dissaux (pierre.dissaux@ellidiss.com)

Jean-Charles Roger (jean-charles.roger@ellidiss.com)

24 quai de la douane, 29200 Brest, Brittany, France

mailto:pierre.dissaux@ellidiss.com
mailto:jean-charles.roger@ellidiss.com

Ellidiss Technologies

Methods and Tools for critical software development

• HOOD design tools in use for major European aerospace projects:
• Eurofighter/Typhoon; Airbus A380, A350, A400M, Tiger, European Robotic Arm for

the ISS, …

• AADL Modeling and Verification tools:
• Stood for AADL: design process and graphical editor
• AADL Inspector: static, real-time, safety and security analysis
• Visual Studio Code extension for AADL

• In-house or collaborative R&D projects
• Model processing technologies (LMP)
• European Space Agency (TASTE)
• H2020 (Space Robotics)

https:/www.ellidiss.com

https://www.ellidiss.com/

Stood for AADL

multi-user
project

management

instance model
graphical editor

structured
design

guidelines

requirements
coverage

AADL text
generator

behavior annex
STD editor

AADL Inspector

Projects
manager

Simulation
(Marzhin)

Simulation I/O

LAMP:
Flow analysis

Security analysis
Assurance cases

AADL text editor
core + annexes

Scheduling
Analysis

(Cheddar)

Response
Time

& CPU load

Safety
Analysis (FTA)

Import:
- SysML
- FACE
- Capella PA

Visual Studio Code Extension for AADL

Enhanced AADL
text editor

core + annexes

https://marketplace.visualstudio.com/items?itemName=Ellidiss.aadl-ellidiss

AADL 2.3

• SW Architectural Analysis and Design Language.
• Embedded and critical software (aerospace, transportation, medical, …).
• Supports multi-thread, multi-partitions, multi-core, multi-processor architectures
• Core language with optional annexes (behavior, safety, security,…)
• Supported by a variety of tools (open-source and commercial)

• Digital workflow continuity for SW intensive systems.
• Need to bridge AADL:

• Upstream with system engineering (FACE©, SysML, Capella, …)
• Downstream with source code and platform deployment (Ada, C, RTOS, middleware, …)

• Existing connections between SysML v1 and AADL
• AADL profiles for SysML v1
• SysML v1 to AADL transformation

https://www.sae.org/standards/content/as5506d

https://www.sae.org/standards/content/as5506d

SysML v2 (System Modeling Language)

• A few interesting topics in SysML v2:
• Standardized textual representation.

• Better interoperability (between humans and tools).
• Better scalability
• Better integration within development environments (e.g. svn, git)

• Support of instance models.
• Deeper static and dynamic analysis.

• Extensible by domain libraries (Instead of UML profiles)
• Portable: no need for tool-specific extension.
• Flexible: easy to configure and maintain.

• This work introduces a SysML v2 Domain Library for AADL (work in
progress)

https://www.omgsysml.org/SysML-2.htm
https://github.com/Systems-Modeling/SysML-v2-Release

https://www.omgsysml.org/SysML-2.htm
https://github.com/Systems-Modeling/SysML-v2-Release

Illustrative AADL Example

system ex1

processor hw thread th1 : th.i

thread th2 : th.i

process sw.i

Syntactic comparison of an AADL example and its SysML representation.

One system with 1 processor, 1 process and 2 communicating threads.

System and processor

package ex1_pkg public

with Base_Types;

renames data Base_Types::Integer;

system ex1 end ex1;

system implementation ex1.i

subcomponents

hw : processor hw {

Scheduling_Protocol => (Rate_Monotonic_Protocol);

};

sw : process sw.i;

properties

Actual_Processor_Binding =>

(reference(hw)) applies to sw;

end ex1.i;

processor hw end hw;

package ex1_pkg {

import AADL::*;

import ScalarValues::Integer;

part def ex1 specializes System;

part def 'ex1.i' specializes ex1,

SystemImplementation {

part hw: Hw {

redefines Scheduling_Prototol = Rate_Monotonic_Protocol;

}

part sw: 'sw.i’;

allocation sw_to_hw: Actual_Processor_Binding

allocate sw to hw;

}

part def Hw specializes Processor;

AADL SysML

SysML Parts and part definitions for AADL components.

Use of specialization of pre-defined System, Processor, … part definitions.

Process first part

process sw
features
i1 : in data port Integer;
o1 : out data port Integer;

end sw;

process implementation sw.i
Subcomponents

th1 : thread t {
Dispatch_Protocol => Periodic;
Period => 50ms;
Deadline => 50ms;
Compute_Execution_Time => 2ms..2ms;

};

part def sw specializes Process {

in port i1: IntegerPort;
out port o1: IntegerPort;

}

part def 'sw.i' specializes sw, ProcessImplementation
{

part th1: t {
redefines Dispatch_Protocol = Periodic;
redefines Period = 50 [ms];
:>> Deadline = 50 [ms];
:>> Compute_Execution_Time = 2[ms]..2[ms];

}

AADL SysML

Use of SysML ports for AADL data port.

Redefinition of SysML properties for AADL properties.

Process final part and thread

th2 : thread t { … };
connections
c1 : port i1 -> th1.i1;
c2 : port th1.o1 -> th2.i1 {

Timing => Sampled;
};
c3 : port th2.o1 -> o1;

end sw.i;
thread t
features
i1 : in data port Integer;
o1 : out data port Integer;

end t;
end ex1_pkg;

part th2: t { … }
connection c1: AADL::Connection
connect i1 to th1.i1;
connection c2: AADL::Connection
connect th1.o1 to th2.i1 {
redefines Timing = Sampled;

}
connection c3: AADL::Connection
connect th2.o1 to o1;

}
part def t specializes Thread {

in port i1: IntegerPort;
out port o1: IntegerPort;

}
}

AADL SysML

Named connections with redefined properties.

AADL Thread as specialization of SysML Thread part definition.

AADL and SysML v2 Diagrams

AADL
SysML

AADL Domain Library (1): Components and Features

abstract part def Component;

abstract port def Feature;

abstract part def ComponentType :> Component {

port features: Feature[0..*] :> portsOnPart;

}

abstract part def SubComponent;

abstract part def ComponentImplementation :> ComponentType {

part subcomponents: SubComponent[0..*] :> subparts;

}

SysML part defs for AADL component types and implementations.
SysML

AADL Domain Library (2): Categories composition rules

abstract port def ProcessFeature :> Feature;

part def Process :> ComponentType,

SystemSubComponent, AbstractSubComponent {

port :>> features: ProcessFeature[0..*];

}

abstract part def ProcessSubComponent :> SubComponent;

part def ProcessImplementation :> Process,

ComponentImplementation {

part :>> subcomponents: ProcessSubComponent[0..*];

}

SysMLEnforce composition constraints with SysML type system.

AADL Domain Library (3): others

• AADL Connections

in port operand1 : FloatPort;

part calculator {

out port i1: FloatPort;

}

connect (operand1, calculator.i1);

state b: Behaviour {

entry; then idle;

state idle;

accept Event via e1 do send 2 to o then idle;

}

redefines Dispatch_Protocol = Sporadic;

redefines Deadline = 10 [ms];

• AADL Properties

• AADL Behaviour Specifications

• AADL Hardware/Software mapping

part cpu : CPU { redefines Scheduling_Prototol = AADL::RM; }

part app: App;

allocation processes: AADL::Actual_Processor_Binding

allocate app to cpu;

Work in progress
• Existing mapping elements should be evaluated considering both AADL and SysML v2

semantic rules.

• Evaluation of alternate mapping solutions:
• Using attributes and attributes definitions for AADL Data instead of parts.
• Using action and action definitions for AADL Subprograms instead of parts.

• AADL Abstract components and abstract Features have not been translated for now
• Generic SysML v2 Parts and Ports may be well suited for that.

• Definition of a proper mapping for the other AADL constructs is in progress and subject to
discussions.

• Development of SysML v2 parser/unparser components for the LMP toolbox to enable use
of AADL Inspector processing tools for SysML v2 models

Conclusion

• Making the path between System Engineering and Software
Engineering more seamless is a key issue to improve the continuity of
the digital workflow.

• SysML v2 comes with a new modelling style (textual notation, domain
libraries) that makes it more compatible with AADL.

• Current discussions within the standardization committees (SAE,
OMG), as well as practical experiments with existing AADL tools, will
determine the future of this approach.

